Henstock-Kurzweil Fourier transforms
Talvila, Erik
Illinois J. Math., Tome 46 (2002) no. 3, p. 1207-1226 / Harvested from Project Euclid
The Fourier transform is considered as a Henstock-Kurzweil integral. Sufficient conditions are given for the existence of the Fourier transform and necessary and sufficient conditions are given for it to be continuous. The Riemann-Lebesgue lemma fails: Henstock-Kurzweil Fourier transforms can have arbitrarily large point-wise growth. Convolution and inversion theorems are established. An appendix gives sufficient conditions for interchanging repeated Henstock-Kurzweil integrals and gives an estimate on the integral of a product.
Publié le : 2002-10-15
Classification:  42A38,  26A39
@article{1258138475,
     author = {Talvila, Erik},
     title = {Henstock-Kurzweil Fourier transforms},
     journal = {Illinois J. Math.},
     volume = {46},
     number = {3},
     year = {2002},
     pages = { 1207-1226},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138475}
}
Talvila, Erik. Henstock-Kurzweil Fourier transforms. Illinois J. Math., Tome 46 (2002) no. 3, pp.  1207-1226. http://gdmltest.u-ga.fr/item/1258138475/