Transcendental meromorphic functions with three singular values
Eremenko, A.
Illinois J. Math., Tome 48 (2004) no. 3, p. 701-709 / Harvested from Project Euclid
Every transcendental meromorphic function $f$ in the plane which has only three critical values satisfies ¶ \[ \liminf_{r\to\infty}\frac{T(r,f)}{\log^2r}\geq \frac{\sqrt{3}}{2\pi}, \] ¶ and this estimate is best possible.
Publié le : 2004-04-15
Classification:  30D30
@article{1258138408,
     author = {Eremenko, A.},
     title = {Transcendental meromorphic functions with three singular values},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 701-709},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138408}
}
Eremenko, A. Transcendental meromorphic functions with three singular values. Illinois J. Math., Tome 48 (2004) no. 3, pp.  701-709. http://gdmltest.u-ga.fr/item/1258138408/