Omega-limit sets close to singular-hyperbolic attractors
Carballo, C. M. ; Morales, C. A.
Illinois J. Math., Tome 48 (2004) no. 3, p. 645-663 / Harvested from Project Euclid
We study the omega-limit sets $\omega_X(x)$ in an isolating block $U$ of a singular-hyperbolic attractor for three-dimensional vector fields $X$. We prove that for every vector field $Y$ close to $X$ the set $ \{x\in U:\omega_Y(x)$ contains a singularity$\}$ is {\em residual} in $U$. This is used to prove the persistence of singular-hyperbolic attractors with only one singularity as chain-transitive Lyapunov stable sets. These results generalize well known properties of the geometric Lorenz attractor [GW] and the example in [MPu].
Publié le : 2004-04-15
Classification:  37D05,  37B99,  37C20,  37C70
@article{1258138404,
     author = {Carballo, C. M. and Morales, C. A.},
     title = {Omega-limit sets close to singular-hyperbolic attractors},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 645-663},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138404}
}
Carballo, C. M.; Morales, C. A. Omega-limit sets close to singular-hyperbolic attractors. Illinois J. Math., Tome 48 (2004) no. 3, pp.  645-663. http://gdmltest.u-ga.fr/item/1258138404/