The $\overline{\partial}$-Neumann operator and the Kobayashi metric
Kim, Mijoung
Illinois J. Math., Tome 48 (2004) no. 3, p. 635-643 / Harvested from Project Euclid
We introduce a condition, called Property -K, which encodes information about the holomorphic structure of fat subdomains. We obtain an equivalence between this condition and the compactness of the $\overline{\partial}$-Neumann operator in any convex domain. We also exhibit a local property of the Kobayashi metric under which the domain is locally a product space.
Publié le : 2004-04-15
Classification:  32W05,  32F45
@article{1258138403,
     author = {Kim, Mijoung},
     title = {The $\overline{\partial}$-Neumann operator and the Kobayashi metric},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 635-643},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138403}
}
Kim, Mijoung. The $\overline{\partial}$-Neumann operator and the Kobayashi metric. Illinois J. Math., Tome 48 (2004) no. 3, pp.  635-643. http://gdmltest.u-ga.fr/item/1258138403/