A fractional order Hardy inequality
Dyda, Bartłomiej
Illinois J. Math., Tome 48 (2004) no. 3, p. 575-588 / Harvested from Project Euclid
We investigate the following integral inequality: ¶ \[ \int_D \frac{|u(x)|^p}{\dist(x, D^c)^\alpha} dx \leq c \int_D \!\int_D \frac{|u(x)-u(y)|^p}{|x-y|^{d+\alpha}} dx\,dy, \quad u\in C_c(D), \] ¶ where $\alpha,p>0$ and $D\subset \Rd$ is a Lipschitz domain or its complement or a complement of a point.
Publié le : 2004-04-15
Classification:  26D15,  46E35
@article{1258138400,
     author = {Dyda, Bart\l omiej},
     title = {A fractional order Hardy inequality},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 575-588},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138400}
}
Dyda, Bartłomiej. A fractional order Hardy inequality. Illinois J. Math., Tome 48 (2004) no. 3, pp.  575-588. http://gdmltest.u-ga.fr/item/1258138400/