Explicit formulas for Dirichlet and Hecke $L$-functions
Li, Xian-Jin
Illinois J. Math., Tome 48 (2004) no. 3, p. 491-503 / Harvested from Project Euclid
In 1997, the author proved that the Riemann hypothesis holds if and only if $\lambda_n=\sum [1-(1-1/\rho)^n]>0$ for all positive integers $n$, where the sum is over all complex zeros of the Riemann zeta function. In 1999, E. Bombieri and J. Lagarias generalized this result and obtained a remarkable general theorem about the location of zeros. They also gave an arithmetic interpretation for the numbers $\lambda_n$. In this note, the author extends Bombieri and Lagarias' arithmetic formula to Dirichlet $L$-functions and to $L$-series of elliptic curves over rational numbers.
Publié le : 2004-04-15
Classification:  11M36,  11M26
@article{1258138394,
     author = {Li, Xian-Jin},
     title = {Explicit formulas for Dirichlet and Hecke $L$-functions},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 491-503},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138394}
}
Li, Xian-Jin. Explicit formulas for Dirichlet and Hecke $L$-functions. Illinois J. Math., Tome 48 (2004) no. 3, pp.  491-503. http://gdmltest.u-ga.fr/item/1258138394/