Accessibility and hyperbolicity
Alongi, John M.
Illinois J. Math., Tome 45 (2001) no. 4, p. 681-691 / Harvested from Project Euclid
We examine conditions under which a point in the stable set of a hyperbolic invariant set for a $C^1$ surface diffeomorphism is accessible via a path from the complement of the stable set. Let $M$ be a surface, and let $\Lambda$ be a compact saturated hyperbolic locally stably closed invariant set possessing a local product structure. Denote the stable set of $\Lambda$ by $W^s(\Lambda)$. Our main result states that $z \in W^s(\Lambda)$ is accessible from $M \setminus W^s(\Lambda)$ if and only if $z$ lies on the stable manifold of a periodic point $p$, and there is a branch of a local unstable manifold of $p$ disjoint from $W^s(\Lambda)$.
Publié le : 2001-04-15
Classification:  37E30,  37D05,  37D10,  54H20
@article{1258138363,
     author = {Alongi, John M.},
     title = {Accessibility and hyperbolicity},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 681-691},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138363}
}
Alongi, John M. Accessibility and hyperbolicity. Illinois J. Math., Tome 45 (2001) no. 4, pp.  681-691. http://gdmltest.u-ga.fr/item/1258138363/