A priori estimates for Schrödinger type multipliers
Himonas, A. Alexandrou ; Misiolek, Gerard
Illinois J. Math., Tome 45 (2001) no. 4, p. 631-640 / Harvested from Project Euclid
We present an elementary proof of two a priori estimates for Schrödinger type multipliers on the circle. The first is an $L^4 - L^2$ inequality of Bourgain, while the second is a new $L^6 - L^{3/2}$ inequality. Estimates of this type are useful for the study of the Cauchy problem for Schr\"odinger type equations. The proofs are based on a counting argument and standard real and harmonic analysis techniques.
Publié le : 2001-04-15
Classification:  42B15,  35B45,  35G25,  35J10,  35Q55
@article{1258138360,
     author = {Himonas, A. Alexandrou and Misiolek, Gerard},
     title = {A priori estimates for Schr\"odinger type multipliers},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 631-640},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138360}
}
Himonas, A. Alexandrou; Misiolek, Gerard. A priori estimates for Schrödinger type multipliers. Illinois J. Math., Tome 45 (2001) no. 4, pp.  631-640. http://gdmltest.u-ga.fr/item/1258138360/