A class of maximal operators with rough kernel on product spaces
Ding, Yong ; Lin, Chin-Cheng
Illinois J. Math., Tome 45 (2001) no. 4, p. 545-557 / Harvested from Project Euclid
In this note the authors prove the $L^p(\mathbb{R}^n \times \mathbb{R}^m)$-boundedness for a class of maximal singular integral operators with rough kernel on product spaces. This extends a result obtained by Chen and Wang in 1992.
Publié le : 2001-04-15
Classification:  42B25,  47B38
@article{1258138355,
     author = {Ding, Yong and Lin, Chin-Cheng},
     title = {A class of maximal operators with rough kernel on product spaces},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 545-557},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138355}
}
Ding, Yong; Lin, Chin-Cheng. A class of maximal operators with rough kernel on product spaces. Illinois J. Math., Tome 45 (2001) no. 4, pp.  545-557. http://gdmltest.u-ga.fr/item/1258138355/