Diophantine approximation by cubes of primes and an almost prime. II
Brüdern, J. ; Kumchev, A.
Illinois J. Math., Tome 45 (2001) no. 4, p. 309-321 / Harvested from Project Euclid
Let $\lambda_1,\dots,\lambda_4$ be non-zero with $\lambda_1/\lambda_2$ irrational and negative, and let $\mathcal S$ be the set of values attained by the form $ \lambda_1x_1^3 + \dots + \lambda_4x^3_4 $ when $x_1$ has at most 3 prime divisors and the remaining variables are prime. We prove that most real numbers are close to an element of $\mathcal S$.
Publié le : 2001-01-15
Classification:  11D75,  11J25,  11N36,  11P32,  11P55
@article{1258138270,
     author = {Br\"udern, J. and Kumchev, A.},
     title = {Diophantine approximation by cubes of primes and an almost prime. II},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 309-321},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138270}
}
Brüdern, J.; Kumchev, A. Diophantine approximation by cubes of primes and an almost prime. II. Illinois J. Math., Tome 45 (2001) no. 4, pp.  309-321. http://gdmltest.u-ga.fr/item/1258138270/