On the global structure of Hopf hypersurfaces in a complex space form
Borisenko, A. A.
Illinois J. Math., Tome 45 (2001) no. 4, p. 265-277 / Harvested from Project Euclid
It is known that a tube over a Kähler submanifold in a complex space form is a Hopf hypersurface. In some sense the reverse statement is true: a connected compact generic immersed $C^{2n-1}$ regular Hopf hypersurface in the complex projective space is a tube over an irreducible algebraic variety. In the complex hyperbolic space a connected compact generic immersed $C^{2n-1}$ regular Hopf hypersurface is a geodesic hypersphere.
Publié le : 2001-01-15
Classification:  53C40
@article{1258138267,
     author = {Borisenko, A. A.},
     title = {On the global structure of Hopf hypersurfaces in a complex space form},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 265-277},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138267}
}
Borisenko, A. A. On the global structure of Hopf hypersurfaces in a complex space form. Illinois J. Math., Tome 45 (2001) no. 4, pp.  265-277. http://gdmltest.u-ga.fr/item/1258138267/