Equidimensional symmetric algebras and residual intersections
Johnson, Mark R.
Illinois J. Math., Tome 45 (2001) no. 4, p. 187-193 / Harvested from Project Euclid
For a finitely generated module $M$, over a universally catenary local ring, whose symmetric algebra is equidimensional, the ideals generated by the rows of a minimal presentation matrix are shown to have height at most $\mu(M) - \rank M$. Moreover, in the extremal case, they are Cohen-Macaulay ideals if the symmetric algebra is Cohen-Macaulay. Some applications are given to residual intersections of ideals.
Publié le : 2001-01-15
Classification:  13C15,  13H10
@article{1258138262,
     author = {Johnson, Mark R.},
     title = {Equidimensional symmetric algebras and residual intersections},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 187-193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138262}
}
Johnson, Mark R. Equidimensional symmetric algebras and residual intersections. Illinois J. Math., Tome 45 (2001) no. 4, pp.  187-193. http://gdmltest.u-ga.fr/item/1258138262/