Homology lens spaces in topological 4-manifolds
Edmonds, Allan L.
Illinois J. Math., Tome 49 (2005) no. 2, p. 827-837 / Harvested from Project Euclid
For a closed $4$-manifold $X^4$ and closed $3$-manifold $M^3$ we investigate the smallest integer $n$ (perhaps $n=\infty$) such that $M^3$ embeds in $\#_nX^4$, the connected sum of $n$ copies of $X^4$. It is proven that any lens space (or homology lens space) embeds topologically locally flatly in $\#_2({\mathbf C}P^2\#\ \overline {{\mathbf C}P}^2)$, in $\#_4 S^2\times S^2$ and in $\#_8 \mathbf{C}P^2$.
Publié le : 2005-07-15
Classification:  57N13,  57M35,  57N10
@article{1258138221,
     author = {Edmonds, Allan L.},
     title = {Homology lens spaces in topological 4-manifolds},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 827-837},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138221}
}
Edmonds, Allan L. Homology lens spaces in topological 4-manifolds. Illinois J. Math., Tome 49 (2005) no. 2, pp.  827-837. http://gdmltest.u-ga.fr/item/1258138221/