A product construction for hyperbolic metric spaces
Foertsch, Thomas ; Schroeder, Viktor
Illinois J. Math., Tome 49 (2005) no. 2, p. 793-810 / Harvested from Project Euclid
For hyperbolic metric spaces $X_1$, $X_2$ we define and study a one parameter family of ``hyperbolic products'' $Y_{\De}$, $\De \ge 0$, of $X_1$ and $X_2$. In particular, we investigate the relation between the boundaries at infinity of the factor spaces and the boundary at infinity of their hyperbolic products.
Publié le : 2005-07-15
Classification:  53C23,  53C21
@article{1258138219,
     author = {Foertsch, Thomas and Schroeder, Viktor},
     title = {A product construction for hyperbolic metric spaces},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 793-810},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138219}
}
Foertsch, Thomas; Schroeder, Viktor. A product construction for hyperbolic metric spaces. Illinois J. Math., Tome 49 (2005) no. 2, pp.  793-810. http://gdmltest.u-ga.fr/item/1258138219/