de Rham intersection cohomology for general perversities
Saralegi-Aranguren, Martintxo
Illinois J. Math., Tome 49 (2005) no. 2, p. 737-758 / Harvested from Project Euclid
For a stratified pseudomanifold $X$, we have the de Rham Theorem $ \lau{\IH}{*}{\per{p}}{X} = \lau{\IH}{\per{t} - \per{p}}{*}{X}, $ for a perversity $\per{p}$ verifying $\per{0} \leq \per{p} \leq \per{t}$, where $\per{t}$ denotes the top perversity. We extend this result to any perversity $\per{p}$. In the direction cohomology $\mapsto$ homology, we obtain the isomorphism ¶ \[ \lau{\IH}{*}{\per{p}}{X} = \lau{\IH}{\per{t} -\per{p}}{*}{X,\ib{X}{\per{p}}}, \] ¶ where ¶ \[ \ib{X}{\per{p}} = \bigcup_{ S \preceq S_{1} \atop \per{p} (S_{1})< 0}S = \bigcup_{ \per{p} (S)< 0} \overline{S}. \] ¶ In the direction homology $\mapsto$ cohomology, we obtain the isomorphism ¶ \[ \lau{\IH}{\per{p}}{*}{X}=\lau{\IH}{*}{\max ( \per{0},\per{t} -\per{p})}{X}. \] ¶ In our paper stratified pseudomanifolds with one-codimensional strata are allowed.
Publié le : 2005-07-15
Classification:  55N33,  57N80
@article{1258138217,
     author = {Saralegi-Aranguren, Martintxo},
     title = {de Rham intersection cohomology for general perversities},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 737-758},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138217}
}
Saralegi-Aranguren, Martintxo. de Rham intersection cohomology for general perversities. Illinois J. Math., Tome 49 (2005) no. 2, pp.  737-758. http://gdmltest.u-ga.fr/item/1258138217/