Integration in vector spaces
Stefánsson, Gunnar F.
Illinois J. Math., Tome 45 (2001) no. 4, p. 925-938 / Harvested from Project Euclid
We define an integral of a vector-valued function $f:\Omega\longrightarrow X$ with respect to a bounded countably additive vector-valued measure $\nu:\Sigma\longrightarrow Y$ and investigate its properties. The integral is an element of $X\check{\otimes}Y$, and when $f$ is $\nu$-measurable we show that $f$ is integrable if and only if $\|f\|\in L_{1}(\nu)$. In this case, the indefinite integral of $f$ is of bounded variation if and only if $\|f\|\in L_{1}(|\nu|)$. We also define the integral of a weakly $\nu$-measurable function and show that such a function $f$ satisfies $x^{*}f\in L_{1}(\nu)$ for all $x^{*}\in X^{*}$ and is $|y^{*}\nu|$-Pettis integrable for all $y^{*}\in Y^{*}$.
Publié le : 2001-07-15
Classification:  46G10,  28B05
@article{1258138160,
     author = {Stef\'ansson, Gunnar F.},
     title = {Integration in vector spaces},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 925-938},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138160}
}
Stefánsson, Gunnar F. Integration in vector spaces. Illinois J. Math., Tome 45 (2001) no. 4, pp.  925-938. http://gdmltest.u-ga.fr/item/1258138160/