Linear systems of plane curves with imposed multiple points
Roé, Joaquim
Illinois J. Math., Tome 45 (2001) no. 4, p. 895-906 / Harvested from Project Euclid
A conjecture of Harbourne and Hirschowitz implies that $r \ge 9$ general points of multiplicity $m$ impose independent conditions to the linear system of curves of degree $d$ when $d(d+3) \ge rm(m+1)-2$. In this paper we prove that the conditions are independent provided $d+2\ge (m+1)(\sqrt{r+1.9}+\pi /8) $.
Publié le : 2001-07-15
Classification:  14C20,  14H20,  14H50
@article{1258138158,
     author = {Ro\'e, Joaquim},
     title = {Linear systems of plane curves with imposed multiple points},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 895-906},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138158}
}
Roé, Joaquim. Linear systems of plane curves with imposed multiple points. Illinois J. Math., Tome 45 (2001) no. 4, pp.  895-906. http://gdmltest.u-ga.fr/item/1258138158/