Upper bounds for the first eigenvalue of the operator $L\sb r$ and some applications
Alencar, Hilário ; do Carmo, Manfredo ; Marques, Fernando
Illinois J. Math., Tome 45 (2001) no. 4, p. 851-863 / Harvested from Project Euclid
We obtain upper bounds for the first eigenvalue of the linearized operator $L_r$ of the $r$-mean curvature of a compact manifold immersed in a space of constant curvature $\delta$. By the same method, we obtain an upper bound for the first eigenvalue of the stability operator associated to $L_r$ when $\delta < 0$.
Publié le : 2001-07-15
Classification:  53C42,  58J50
@article{1258138155,
     author = {Alencar, Hil\'ario and do Carmo, Manfredo and Marques, Fernando},
     title = {Upper bounds for the first eigenvalue of the operator $L\sb r$ and some applications},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 851-863},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138155}
}
Alencar, Hilário; do Carmo, Manfredo; Marques, Fernando. Upper bounds for the first eigenvalue of the operator $L\sb r$ and some applications. Illinois J. Math., Tome 45 (2001) no. 4, pp.  851-863. http://gdmltest.u-ga.fr/item/1258138155/