An ergodic and topological approach to disconjugate linear Hamiltonian systems
Johnson, Russell ; Novo, Sylvia ; Obaya, Rafael
Illinois J. Math., Tome 45 (2001) no. 4, p. 803-822 / Harvested from Project Euclid
This paper is devoted to the qualitative study of disconjugate random linear Hamiltonian systems. We relate the principal solutions at $\pm\infty$ with the ergodic structure of the flow, the presence of exponential dichotomy, and the description of the Sacker-Sell spectrum. A continuity theorem for the principal solutions is also provided.
Publié le : 2001-07-15
Classification:  34B20,  34C10,  34D09,  34F05,  37A99,  37B99
@article{1258138152,
     author = {Johnson, Russell and Novo, Sylvia and Obaya, Rafael},
     title = {An ergodic and topological approach to disconjugate linear Hamiltonian systems},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 803-822},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138152}
}
Johnson, Russell; Novo, Sylvia; Obaya, Rafael. An ergodic and topological approach to disconjugate linear Hamiltonian systems. Illinois J. Math., Tome 45 (2001) no. 4, pp.  803-822. http://gdmltest.u-ga.fr/item/1258138152/