Geometric exponents for hyperbolic Julia sets
Heinemann, Stefan-M. ; Stratmann, Bernd O.
Illinois J. Math., Tome 45 (2001) no. 4, p. 775-785 / Harvested from Project Euclid
We show that the Hausdorff dimension of the Julia set associated to a hyperbolic rational map is bounded away from $2$, where the bound depends only on certain intrinsic geometric exponents. This result is derived via lower estimates for the iterate-counting function and for the dynamical Poincaré series. We deduce some interesting consequences, such as upper bounds for the decay of the area of parallel-neighbourhoods of the Julia set, and lower bounds for the Lyapunov exponents with respect to the measure of maximal entropy.
Publié le : 2001-07-15
Classification:  37F50,  28A80,  37F15,  37F35
@article{1258138150,
     author = {Heinemann, Stefan-M. and Stratmann, Bernd O.},
     title = {Geometric exponents for hyperbolic Julia sets},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 775-785},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138150}
}
Heinemann, Stefan-M.; Stratmann, Bernd O. Geometric exponents for hyperbolic Julia sets. Illinois J. Math., Tome 45 (2001) no. 4, pp.  775-785. http://gdmltest.u-ga.fr/item/1258138150/