New examples of noncommutative $Łambda(p)$ sets
Banks, William D. ; Harcharras, Asma
Illinois J. Math., Tome 47 (2003) no. 4, p. 1063-1078 / Harvested from Project Euclid
In this paper, we introduce a certain combinatorial property $Z^\star(k)$, which is defined for every integer $k\ge 2$, and show that every set $E\subset\Z$ with the property $Z^\star(k)$ is necessarily a noncommutative $\Lambda(2k)$ set. In particular, using number theoretic results about the number of solutions to so-called ``$S$-unit equations,'' we show that for any finite set $Q$ of prime numbers the set $E_Q$ of natural numbers whose prime divisors all lie in the set $Q$ is noncommutative $\Lambda(p)$ for every real number $2
Publié le : 2003-10-15
Classification:  46L52,  11N25,  43A46,  47B10
@article{1258138091,
     author = {Banks, William D. and Harcharras, Asma},
     title = {New examples of noncommutative $\L ambda(p)$ sets},
     journal = {Illinois J. Math.},
     volume = {47},
     number = {4},
     year = {2003},
     pages = { 1063-1078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138091}
}
Banks, William D.; Harcharras, Asma. New examples of noncommutative $Łambda(p)$ sets. Illinois J. Math., Tome 47 (2003) no. 4, pp.  1063-1078. http://gdmltest.u-ga.fr/item/1258138091/