Sharp subelliptic estimates for $n-1$ forms on finite type domains
Ho, Lop-Hing
Illinois J. Math., Tome 45 (2001) no. 4, p. 1401-1420 / Harvested from Project Euclid
Let $x_0\in b\Omega $ in a smooth domain $\Omega \subset \C^n$, which is not assumed to be pseudoconvex. We define a finite type condition $R( L,x_0) $ for a vector field $L\in T^{1,0}( b\Omega)$, which equals the well-known type $c(L,x_0) $ in certain important cases. We prove that if $R(L,x_0)=m$, then a subelliptic estimate of order $1/m$ holds at $x_0$ for $(p,n-1)$ forms.
Publié le : 2001-10-15
Classification:  35N15,  32W05
@article{1258138076,
     author = {Ho, Lop-Hing},
     title = {Sharp subelliptic estimates for $n-1$ forms on finite type domains},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 1401-1420},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138076}
}
Ho, Lop-Hing. Sharp subelliptic estimates for $n-1$ forms on finite type domains. Illinois J. Math., Tome 45 (2001) no. 4, pp.  1401-1420. http://gdmltest.u-ga.fr/item/1258138076/