Harmonic maps from Finsler manifolds
Mo, Xiaohuan
Illinois J. Math., Tome 45 (2001) no. 4, p. 1331-1345 / Harvested from Project Euclid
A Finsler manifold is a Riemannian manifold without the quadratic restriction. In this paper we introduce the energy functional, the Euler-Lagrange operator, and the stress-energy tensor for a smooth map $\phi$ from a Finsler manifold to a Riemannian manifold. We show that $\phi$ is an extremal of the energy functional if and only if $\phi$ satisfies the corresponding Euler-Lagrange equation. We also characterize weak Landsberg manifolds in terms of harmonicity and horizontal conservativity. Using the representation of a tension field in terms of geodesic coefficients, we construct new examples of harmonic maps from Berwald manifolds which are neither Riemannian nor Minkowskian.
Publié le : 2001-10-15
Classification:  53C43,  53C60,  58E20
@article{1258138069,
     author = {Mo, Xiaohuan},
     title = {Harmonic maps from Finsler manifolds},
     journal = {Illinois J. Math.},
     volume = {45},
     number = {4},
     year = {2001},
     pages = { 1331-1345},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138069}
}
Mo, Xiaohuan. Harmonic maps from Finsler manifolds. Illinois J. Math., Tome 45 (2001) no. 4, pp.  1331-1345. http://gdmltest.u-ga.fr/item/1258138069/