Let $\{ T_t\}_{t>0}$ be the semigroup of linear operators
generated by a Schrödinger operator $-A=\Delta -V$ on
$\mathbb{R}^d$, where $V$ is a nonnegative nonzero potential
satisfying a reverse Hölder inequality, and let
$\int_0^\infty \lambda \, dE_A(\lambda )$ be the spectral
resolution of $A$. We say that a function $f$ is an element of
$H_A^1$ if the maximal function $\mathcal{M}f(x)=\sup_{t>0}
|T_tf(x)|$ belongs to $L^1$. We prove that if a function $F$
satisfies a Mihlin condition with exponent $\alpha >d/2$ then
the operator $F(A)=\int_0^\infty F(\lambda )\, dE_A(\lambda )$
is bounded on $H_A^1$.