Intersection cohomology of stratified circle actions
Padilla, G.
Illinois J. Math., Tome 49 (2005) no. 2, p. 659-685 / Harvested from Project Euclid
For any stratified pseudomanifold $X$ and any action of the unit circle $\mathbb{S}^1$ on $X$ preserving the stratification and the local structure, the orbit space $X/\mathbb{S}^1$ is also a stratified pseudomanifold. For each perversity $\overline{q}$ in $X$ the orbit map $\pi : X/\mathbb{S}^1$ induces a Gysin sequence relating the $\overline{q}$-intersection cohomologies of $X$ and $X/\mathbb{S}^1$. The third term of this sequence can be given by means of a spectral sequence on $X/\mathbb{S}^1 whose second term is the cohomology of the set of fixed points $X^{S^{1}}$ with values on a constructible sheaf.
Publié le : 2005-04-15
Classification:  57N80,  55N33,  57R30
@article{1258138038,
     author = {Padilla, G.},
     title = {Intersection cohomology of stratified circle actions},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 659-685},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138038}
}
Padilla, G. Intersection cohomology of stratified circle actions. Illinois J. Math., Tome 49 (2005) no. 2, pp.  659-685. http://gdmltest.u-ga.fr/item/1258138038/