The limit lamination metric for the Colding-Minicozzi minimal lamination
Meeks, William H.
Illinois J. Math., Tome 49 (2005) no. 2, p. 645-658 / Harvested from Project Euclid
We prove that the singular set $S(\mathcal{L})$ of convergence in a Colding-Minicozzi limit minimal lamination $\lc$ is a $C^{1,1}$-curve which is orthogonal to leaves of the limit minimal lamination $\mathcal{L}$ in some neighborhood of $\mathcal{S}(\mathcal{L})$. We also obtain useful information on the related limit lamination metric.
Publié le : 2005-04-15
Classification:  53A10,  53C42
@article{1258138037,
     author = {Meeks, William H.},
     title = {The limit lamination metric for the Colding-Minicozzi minimal lamination},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 645-658},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138037}
}
Meeks, William H. The limit lamination metric for the Colding-Minicozzi minimal lamination. Illinois J. Math., Tome 49 (2005) no. 2, pp.  645-658. http://gdmltest.u-ga.fr/item/1258138037/