On the Barban-Davenport-Halberstam theorem. {XVIII}
Hooley, C.
Illinois J. Math., Tome 49 (2005) no. 2, p. 581-643 / Harvested from Project Euclid
We consider sequences, of positive density $C$, of positive integers $s$ that are postulated to have the property that %%%%%%%%%%%%%%%%%%%% \begin{align} \notag S(x;a,k) &= \sum_{\substack{s\leq x \\ s\equiv a, \mod k}} 1 = f(a,k)x+O\left(x \log^{-A}x\right) \end{align} %%%%%%%%%%%%%%%%%%%% for any positive constant $A$. Let %%%%%%%%%%%%%%%%%%%% \begin{align} \notag G(x,Q) &= \sum_{k \leq Q} \sum_{0
Publié le : 2005-04-15
Classification:  11N37,  11N56
@article{1258138036,
     author = {Hooley, C.},
     title = {On the Barban-Davenport-Halberstam theorem. {XVIII}},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 581-643},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138036}
}
Hooley, C. On the Barban-Davenport-Halberstam theorem. {XVIII}. Illinois J. Math., Tome 49 (2005) no. 2, pp.  581-643. http://gdmltest.u-ga.fr/item/1258138036/