On compactness of measures on Polish spaces
Borodulin-Nadzieja, Piotr ; Plebanek, Grzegorz
Illinois J. Math., Tome 49 (2005) no. 2, p. 531-545 / Harvested from Project Euclid
We present some results related to the question whether every finite measure $\mu$ defined on a $\sigma$--algebra $\Sigma\sub \Borel[0,1]$ is countably compact. In particular, we show that for every finite measure space $(X,\Sigma,\mu)$, where $X$ is a Polish space and $\Sigma\sub \Borel(X)$, there is a regularly monocompact measure space $(\widehat{X},\widehat{\Sigma},\widehat{\mu})$ and an inverse-measure-preserving function $f:\widehat{X}\to X$.
Publié le : 2005-04-15
Classification:  28C15
@article{1258138033,
     author = {Borodulin-Nadzieja, Piotr and Plebanek, Grzegorz},
     title = {On compactness of measures on Polish spaces},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 531-545},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138033}
}
Borodulin-Nadzieja, Piotr; Plebanek, Grzegorz. On compactness of measures on Polish spaces. Illinois J. Math., Tome 49 (2005) no. 2, pp.  531-545. http://gdmltest.u-ga.fr/item/1258138033/