Minimal hypersurfaces with zero Gauss-Kronecker curvature
Hasanis, T. ; Savas-Halilaj, A. ; Vlachos, T.
Illinois J. Math., Tome 49 (2005) no. 2, p. 523-529 / Harvested from Project Euclid
We investigate complete minimal hypersurfaces in the Euclidean space ${R}^{4}$, with Gauss-Kronecker curvature identically zero. We prove that, if $f:M^{3}\rightarrow {R}^{4}$ is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature bounded from below, then $f(M^{3})$ splits as a Euclidean product $L^{2}\times {R}$, where $L^{2}$ is a complete minimal surface in $ {R}^{3}$ with Gaussian curvature bounded from below.
Publié le : 2005-04-15
Classification:  53C42
@article{1258138032,
     author = {Hasanis, T. and Savas-Halilaj, A. and Vlachos, T.},
     title = {Minimal hypersurfaces with zero Gauss-Kronecker curvature},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 523-529},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138032}
}
Hasanis, T.; Savas-Halilaj, A.; Vlachos, T. Minimal hypersurfaces with zero Gauss-Kronecker curvature. Illinois J. Math., Tome 49 (2005) no. 2, pp.  523-529. http://gdmltest.u-ga.fr/item/1258138032/