The braid index of surface-knots and quandle colorings
Tanaka, Kokoro
Illinois J. Math., Tome 49 (2005) no. 2, p. 517-522 / Harvested from Project Euclid
The braid index of a surface-knot $F$ is the minimal number among the degrees of all simple surface braids whose closures are ambient isotopic to $F$. We prove that there exists a surface-knot with braid index $k$ for any positive integer $k$. To prove it, we use colorings of surface-knots by quandles and give lower bounds of the braid index of surface-knots.
Publié le : 2005-04-15
Classification:  57Q45,  57M25
@article{1258138031,
     author = {Tanaka, Kokoro},
     title = {The braid index of surface-knots and quandle colorings},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 517-522},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138031}
}
Tanaka, Kokoro. The braid index of surface-knots and quandle colorings. Illinois J. Math., Tome 49 (2005) no. 2, pp.  517-522. http://gdmltest.u-ga.fr/item/1258138031/