Maps preserving zero Jordan products on Hermitian operators
Chebotar, Mikhail A. ; Ke, Wen-Fong ; Lee, Pjek-Hwee
Illinois J. Math., Tome 49 (2005) no. 2, p. 445-452 / Harvested from Project Euclid
Let $H$ be a separable complex Hilbert space and $B_s(H)$ the Jordan algebra of all Hermitian operators on $H$. Let $\theta:B_s(H)\to B_s(H)$ be a surjective ${\mathbb R}$-linear map which is continuous in the strong operator topology such that $\theta(x)\theta(y)+\theta(y)\theta(x)=0$ for all $x,y\in B_s(H)$ with $xy+yx=0$. We show that $\theta(x)=\lambda uxu^*$ for all $x\in B_s(H)$, where $\lambda$ is a nonzero real number and $u$ is a unitary or anti-unitary operator on $H$.
Publié le : 2005-04-15
Classification:  47B48,  16W10,  17C30,  46L70
@article{1258138027,
     author = {Chebotar, Mikhail A. and Ke, Wen-Fong and Lee, Pjek-Hwee},
     title = {Maps preserving zero Jordan products on Hermitian operators},
     journal = {Illinois J. Math.},
     volume = {49},
     number = {2},
     year = {2005},
     pages = { 445-452},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138027}
}
Chebotar, Mikhail A.; Ke, Wen-Fong; Lee, Pjek-Hwee. Maps preserving zero Jordan products on Hermitian operators. Illinois J. Math., Tome 49 (2005) no. 2, pp.  445-452. http://gdmltest.u-ga.fr/item/1258138027/