A remark on Hecke operators and a theorem of Dwork and Koike
Swisher, Holly
Illinois J. Math., Tome 48 (2004) no. 3, p. 353-356 / Harvested from Project Euclid
Let $p\geq 5$ be prime, $\mathfrak{S}_p$ the set of all characteristic $p$ supersingular j-invariants in $\mathbb{F}_p-\{0,1728\}$, and $\mathfrak{M}_p$ the set of all monic irreducible quadratic polynomials in $\mathbb{F}_p[x]$ whose roots are supersingular j-invariants. A theorem of Dwork and Koike asserts that there are integers $A_p(\alpha),B_p(g),C_p(g)$, and a polynomial $D_p(x)\in\mathbb{F}_p[x]$ of degree $p-1$, for which ¶ \begin{multline*} j(pz) \equiv j(z)^p + pD_p(j(z)) \\ + p\sum_{\alpha\in\mathfrak{S}_p}\frac{A_p(\alpha)}{j(z)-\alpha} + p \sum_{ g(x) \in \mathfrak{M}_p} \frac{B_p(g)j(z)+C_p(g)}{g(j(z))} \pmod{p^2}. \end{multline*} ¶ It is natural to seek a description of the polynomials $D_p(x)$. Here we provide such a description in terms of certain Hecke polynomials.
Publié le : 2004-01-15
Classification:  11F25,  11F30,  11F33
@article{1258136188,
     author = {Swisher, Holly},
     title = {A remark on Hecke operators and a theorem of Dwork and Koike},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 353-356},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258136188}
}
Swisher, Holly. A remark on Hecke operators and a theorem of Dwork and Koike. Illinois J. Math., Tome 48 (2004) no. 3, pp.  353-356. http://gdmltest.u-ga.fr/item/1258136188/