An extremal function for the multiplier algebra of the universal Pick space
Wikström, Frank
Illinois J. Math., Tome 48 (2004) no. 3, p. 1053-1065 / Harvested from Project Euclid
Let $H^2_m$ be the Hilbert function space on the unit ball in $\C{m}$ defined by the kernel $k(z,w) = (1-\langle z,w \rangle)^{-1}$. For any weak zero set of the multiplier algebra of $H^2_m$, we study a natural extremal function, $E$. We investigate the properties of $E$ and show, for example, that $E$ tends to $0$ at almost every boundary point. We also give several explicit examples of the extremal function and compare the behaviour of $E$ to the behaviour of $\delta^*$ and $g$, the corresponding extremal function for $H^\infty$ and the pluricomplex Green function, respectively.
Publié le : 2004-07-15
Classification:  32U35,  32F45,  46E22,  46J15,  47B32
@article{1258131070,
     author = {Wikstr\"om, Frank},
     title = {An extremal function for the multiplier algebra of the universal Pick space},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 1053-1065},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258131070}
}
Wikström, Frank. An extremal function for the multiplier algebra of the universal Pick space. Illinois J. Math., Tome 48 (2004) no. 3, pp.  1053-1065. http://gdmltest.u-ga.fr/item/1258131070/