Duals of formal group Hopf orders in cyclic groups
Childs, Lindsay N. ; Underwood, Robert G.
Illinois J. Math., Tome 48 (2004) no. 3, p. 923-940 / Harvested from Project Euclid
Let $p$ be a prime number, $K$ be a finite extension of the $p$-adic rational numbers containing a primitive $p^n$th root of unity, $R$ be the valuation ring of $K$ and $G$ be the cyclic group of order $p^n$. We define triangular Hopf orders over $R$ in $KG$, and show that there exist triangular Hopf orders with $n(n+1)/2$ parameters by showing that the linear duals of "sufficiently $p$-adic" formal group Hopf orders are triangular.
Publié le : 2004-07-15
Classification:  16W30,  11S31,  11S45,  14L05
@article{1258131060,
     author = {Childs, Lindsay N. and Underwood, Robert G.},
     title = {Duals of formal group Hopf orders in cyclic groups},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 923-940},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258131060}
}
Childs, Lindsay N.; Underwood, Robert G. Duals of formal group Hopf orders in cyclic groups. Illinois J. Math., Tome 48 (2004) no. 3, pp.  923-940. http://gdmltest.u-ga.fr/item/1258131060/