The automorphism group of domains with boundary points of infinite type
Landucci, Mario
Illinois J. Math., Tome 48 (2004) no. 3, p. 875-885 / Harvested from Project Euclid
Let $\Omega\subset\mathbb C^2$ be a smoothly bounded domain. We prove that if $\partial \Omega$ contains a (small) smooth curve of points of infinity type, then the automorphism group $\Aut(\Omega)$ is compact. This result implies the Greene-Krantz conjecture for a special class of domains. The proof makes no use of scaling techniques.
Publié le : 2004-07-15
Classification:  32M99,  32T99
@article{1258131057,
     author = {Landucci, Mario},
     title = {The automorphism group of domains with boundary points of infinite type},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 875-885},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258131057}
}
Landucci, Mario. The automorphism group of domains with boundary points of infinite type. Illinois J. Math., Tome 48 (2004) no. 3, pp.  875-885. http://gdmltest.u-ga.fr/item/1258131057/