We prove that for $p\in (0,\infty)$ an analytic
univalent function in the unit disk belongs to the Hardy space $H^p$
if and only if it belongs to the Dirichlet type space
$\mathcal {D}_{p-1}^p$.
Publié le : 2004-07-15
Classification:
30H05,
30C35,
30D55,
31C25,
46E15
@article{1258131055,
author = {Baernstein, Albert and Girela, Daniel and Pel\'aez, Jos\'e \'Angel},
title = {Univalent functions, Hardy spaces and spaces of Dirichlet type},
journal = {Illinois J. Math.},
volume = {48},
number = {3},
year = {2004},
pages = { 837-859},
language = {en},
url = {http://dml.mathdoc.fr/item/1258131055}
}
Baernstein, Albert; Girela, Daniel; Peláez, José Ángel. Univalent functions, Hardy spaces and spaces of Dirichlet type. Illinois J. Math., Tome 48 (2004) no. 3, pp. 837-859. http://gdmltest.u-ga.fr/item/1258131055/