The Steinhaus tiling problem and the range of certain quadratic forms
Kolountzakis, Mihail N. ; Papadimitrakis, Michael
Illinois J. Math., Tome 46 (2002) no. 3, p. 947-951 / Harvested from Project Euclid
We give a short proof of the fact that there are no measurable subsets of Euclidean space (in dimension $d\ge 3$) which, no matter how translated and rotated, always contain exactly one integer lattice point. In dimension $d=2$ (the original Steinhaus problem) the question remains open.
Publié le : 2002-07-15
Classification:  52C22,  11E16
@article{1258130994,
     author = {Kolountzakis, Mihail N. and Papadimitrakis, Michael},
     title = {The Steinhaus tiling problem and the range of certain quadratic forms},
     journal = {Illinois J. Math.},
     volume = {46},
     number = {3},
     year = {2002},
     pages = { 947-951},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258130994}
}
Kolountzakis, Mihail N.; Papadimitrakis, Michael. The Steinhaus tiling problem and the range of certain quadratic forms. Illinois J. Math., Tome 46 (2002) no. 3, pp.  947-951. http://gdmltest.u-ga.fr/item/1258130994/