On the Schatten class membership of Hankel operators on the unit ball
Xia, Jingbo
Illinois J. Math., Tome 46 (2002) no. 3, p. 913-928 / Harvested from Project Euclid
A well-known theorem of K. Zhu \cite{6} asserts that, for $2 \leq p <\infty $, the Hankel operators $H_f$ and $H_{\bar f}$ on the Bergman space $L^2_a(B_n,dV)$ of the unit ball belong to the Schatten class ${\mathcal{C}}_p$ if and only if the mean oscillation $\MO(f)(z) = \{\widetilde{|f|^2}(z) - |\tilde f(z)|^2\}^{1/2}$ belongs to $L^p(B_n,(1-|z|^2)^{-n-1}dV(z))$. It is well known that, for trivial reasons, this theorem cannot be extended to the case $p \leq 2n/(n+1)$. This paper fills the gap between $2n/(n+1)$ and 2. More precisely, we prove that, when $2n/(n+1) < p < 2$, the same theorem holds true.
Publié le : 2002-07-15
Classification:  47B35,  32A70,  47B10,  47B32
@article{1258130992,
     author = {Xia, Jingbo},
     title = {On the Schatten class membership of Hankel operators on the unit ball},
     journal = {Illinois J. Math.},
     volume = {46},
     number = {3},
     year = {2002},
     pages = { 913-928},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258130992}
}
Xia, Jingbo. On the Schatten class membership of Hankel operators on the unit ball. Illinois J. Math., Tome 46 (2002) no. 3, pp.  913-928. http://gdmltest.u-ga.fr/item/1258130992/