$(\mathbf{M},cr^\gamma,\delta)$-minimizing curve regularity
Meinguet, Thomas
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 577-591 / Harvested from Project Euclid
This is a new proof that $(\mathbf{M},Cr^\gamma,\delta)$-minimizing sets $S$ are pieces of $\mathcal{C}^{1,\gamma/2}$ curves, $0<\gamma\leqslant1$. To obtain this result, the almost monotonicity property is established for balls centered on $S$ or not. Furthermore it is proved that almost minimizing sets fulfill the epiperimetric inequality.
Publié le : 2009-11-15
Classification:  Minimal,  almost minimal,  almost monotonicity,  epiperimetry,  49Q10
@article{1257776235,
     author = {Meinguet, Thomas},
     title = {$(\mathbf{M},cr^\gamma,\delta)$-minimizing curve regularity},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 577-591},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257776235}
}
Meinguet, Thomas. $(\mathbf{M},cr^\gamma,\delta)$-minimizing curve regularity. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  577-591. http://gdmltest.u-ga.fr/item/1257776235/