A probabilistic ergodic decomposition result
Raugi, Albert
Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, p. 932-942 / Harvested from Project Euclid
Let $(X,{\mathfrak{X}},\mu)$ be a standard probability space. We say that a sub-σ-algebra ${\mathfrak{B}}$ of ${\mathfrak{X}}$ decomposes μ in an ergodic way if any regular conditional probability ${}^{\mathfrak{B}}\!\!P$ with respect to ${\mathfrak{B}}$ and μ satisfies, for μ-almost every x∈X, $\forall B\in{\mathfrak{B}},{}^{\mathfrak{B}}\!\!P(x,B)\in\{0,1\}$ . In this case the equality $\mu(\cdot)=\int_{X}{}^{\mathfrak{B}}\!\!P(x,\cdot)\mu(\mathrm{d}x)$ , gives us an integral decomposition in “ ${\mathfrak{B}}$ -ergodic” components. ¶ For any sub-σ-algebra ${\mathfrak{B}}$ of ${\mathfrak{X}}$ , we denote by $\overline{\mathfrak{B}}$ the smallest sub-σ-algebra of ${\mathfrak{X}}$ containing ${\mathfrak{B}}$ and the collection of all sets A in ${\mathfrak{X}}$ satisfying μ(A)=0. We say that ${\mathfrak{B}}$ is μ-complete if ${\mathfrak{B}}=\overline{\mathfrak{B}}$ . ¶ Let $\{{\mathfrak{B}}_{i}\dvt i\in I\}$ be a non-empty family of sub-σ-algebras which decompose μ in an ergodic way. Suppose that, for any finite subset J of I, $\bigcap_{i\in J}\overline{{\mathfrak{B}}_{i}}=\overline{\bigcap_{i\in J}{\mathfrak{B}}_{i}}$ ; this assumption is satisfied in particular when the σ-algebras ${\mathfrak{B}}_{i}$ , i∈I, are μ-complete. Then we prove that the sub-σ-algebra $\bigcap_{i\in I}{\mathfrak{B}}_{i}$ decomposes μ in an ergodic way.
Publié le : 2009-11-15
Classification:  Regular conditional probability,  Disintegration of probability,  Quasi-invariant measures,  Ergodic decomposition,  28A50,  28D05,  60A10
@article{1257529886,
     author = {Raugi, Albert},
     title = {A probabilistic ergodic decomposition result},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {45},
     number = {1},
     year = {2009},
     pages = { 932-942},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257529886}
}
Raugi, Albert. A probabilistic ergodic decomposition result. Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, pp.  932-942. http://gdmltest.u-ga.fr/item/1257529886/