Superposition rules and stochastic Lie–Scheffers systems
Lázaro-Camí, Joan-Andreu ; Ortega, Juan-Pablo
Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, p. 910-931 / Harvested from Project Euclid
This paper proves a version for stochastic differential equations of the Lie–Scheffers theorem. This result characterizes the existence of nonlinear superposition rules for the general solution of those equations in terms of the involution properties of the distribution generated by the vector fields that define it. When stated in the particular case of standard deterministic systems, our main theorem improves various aspects of the classical Lie–Scheffers result. We show that the stochastic analog of the classical Lie–Scheffers systems can be reduced to the study of Lie group valued stochastic Lie–Scheffers systems; those systems, as well as those taking values in homogeneous spaces are studied in detail. The developments of the paper are illustrated with several examples.
Publié le : 2009-11-15
Classification:  Lie–Scheffers system,  superposition rules,  stochastic differential equations,  Wei–Norman method,  60H10,  34F05
@article{1257529885,
     author = {L\'azaro-Cam\'\i , Joan-Andreu and Ortega, Juan-Pablo},
     title = {Superposition rules and stochastic Lie--Scheffers systems},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {45},
     number = {1},
     year = {2009},
     pages = { 910-931},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257529885}
}
Lázaro-Camí, Joan-Andreu; Ortega, Juan-Pablo. Superposition rules and stochastic Lie–Scheffers systems. Ann. Inst. H. Poincaré Probab. Statist., Tome 45 (2009) no. 1, pp.  910-931. http://gdmltest.u-ga.fr/item/1257529885/