$\kappa$ -Ohio completeness
BASILE, Désirée ; VAN MILL, Jan ; RIDDERBOS, Guit-Jan
J. Math. Soc. Japan, Tome 61 (2009) no. 3, p. 1293-1301 / Harvested from Project Euclid
Generalizing the Ohio completeness property, we introduce the notion of $\kappa$ -Ohio completeness. Although many results from a previous paper by the authors may easily be adapted for this new property, there are also some interesting differences. We provide several examples to illustrate this. We also have a consistency result; depending on the value of the cardinal $\mathfrak{d}$ , the countable union of open and $\omega_{1}$ -Ohio complete subspaces may or may not be $\omega_{1}$ -Ohio complete.
Publié le : 2009-10-15
Classification:  $\kappa$-Ohio complete,  sum theorems,  compactification,  54D35,  54G20,  54B05,  54B25
@article{1257520508,
     author = {BASILE, D\'esir\'ee and VAN MILL, Jan and RIDDERBOS, Guit-Jan},
     title = {$\kappa$ -Ohio completeness},
     journal = {J. Math. Soc. Japan},
     volume = {61},
     number = {3},
     year = {2009},
     pages = { 1293-1301},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257520508}
}
BASILE, Désirée; VAN MILL, Jan; RIDDERBOS, Guit-Jan. $\kappa$ -Ohio completeness. J. Math. Soc. Japan, Tome 61 (2009) no. 3, pp.  1293-1301. http://gdmltest.u-ga.fr/item/1257520508/