A classification of graded extensions in a skew Laurent polynomial ring, II
XIE, Guangming ; MARUBAYASHI, Hidetoshi
J. Math. Soc. Japan, Tome 61 (2009) no. 3, p. 1111-1130 / Harvested from Project Euclid
Let $V$ be a total valuation ring of a division ring $K$ with an automorphism $\sigma$ and let $A=\oplus_{i\in \mbi{Z}} A_{i} X^{i}$ be a graded extension of $V$ in $K[X,X^{-1};\sigma]$ , the skew Laurent polynomial ring. We classify $A$ by distinguishing three different types based on the properties of $A_{1}$ and $A_{-1}$ , and a complete description of $A_{i}$ for all $i\in \mbi{Z}$ is given in the case where $A_{1}$ is not a finitely generated left $O_{l}(A_{1})$ -ideal.
Publié le : 2009-10-15
Classification:  graded extension,  total valuation ring,  skew Laurent polynomial ring,  homogeneous element,  division ring,  16W50
@article{1257520502,
     author = {XIE, Guangming and MARUBAYASHI, Hidetoshi},
     title = {A classification of graded extensions in a skew Laurent polynomial ring, II},
     journal = {J. Math. Soc. Japan},
     volume = {61},
     number = {3},
     year = {2009},
     pages = { 1111-1130},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257520502}
}
XIE, Guangming; MARUBAYASHI, Hidetoshi. A classification of graded extensions in a skew Laurent polynomial ring, II. J. Math. Soc. Japan, Tome 61 (2009) no. 3, pp.  1111-1130. http://gdmltest.u-ga.fr/item/1257520502/