Extension dimension of a wide class of spaces
IVANŠIĆ, Ivan ; RUBIN, Leonard R.
J. Math. Soc. Japan, Tome 61 (2009) no. 3, p. 1097-1110 / Harvested from Project Euclid
We prove the existence of extension dimension for a much expanded class of spaces. First we obtain several theorems which state conditions on a polyhedron or $\mathop{\mathrm{CW}}$ -complex $K$ and a space $X$ in order that $X$ be an absolute co-extensor for $K$ . Then we prove the existence of and describe a wedge representative of extension dimension for spaces in a wide class relative to polyhedra or $\mathop{\mathrm{CW}}$ -complexes. We also obtain a result on the existence of a “countable” representative of the extension dimension of a Hausdorff compactum.
Publié le : 2009-10-15
Classification:  absolute co-extensor,  absolute extensor,  anti-basis,  cardinality of a complex,  CW-complex,  dd-space,  ddP-space,  extension dimension,  extension theory,  extension type,  Hausdorff $\sigma$-compactum,  polyhedron,  pseudo-compact,  $\sigma$-pseudo-compactum,  $\sigma$-compactum,  weak extension dimension,  weight,  54C55,  54C20
@article{1257520501,
     author = {IVAN\v SI\'C, Ivan and RUBIN, Leonard R.},
     title = {Extension dimension of a wide class of spaces},
     journal = {J. Math. Soc. Japan},
     volume = {61},
     number = {3},
     year = {2009},
     pages = { 1097-1110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257520501}
}
IVANŠIĆ, Ivan; RUBIN, Leonard R. Extension dimension of a wide class of spaces. J. Math. Soc. Japan, Tome 61 (2009) no. 3, pp.  1097-1110. http://gdmltest.u-ga.fr/item/1257520501/