The paper is concerned with linear thermoelastic plate equations in the half-space $\mbi{R}^{n}_{+} = \{x = (x_{1}, \ldots, x_{n}) \mid x_{n} > 0\}$ :
¶
$u_{tt} + \Delta^{2}u + \Delta\theta = 0$
and
¶
$\theta_{t} - \Delta \theta - \Delta u_{t} = 0$
$\mbi{R}_{+}^{n}\times(0, \infty),$
¶
subject to the boundary condition: $u|_{x_{n}=0} = D_{n}u|_{x_{n}=0} = \theta|_{x_{n}=0} = 0$ and initial condition:
$(u, D_{t}u, \theta)|_{t=0} = (u_{0}, v_{0}, \theta_{0}) \in \mathcal{H}_{p} = W^{2}_{p, D}\times L_{p}\times L_{p}$ , where $W^{2}_{p, D} = \{u \in W^{2}_{p} \mid u|_{x_{n}=0} = D_{n}u|_{x_{n}=0} = 0\}$ . We show that for any $p \in (1, \infty)$ , the associated semigroup $\{T(t)\}_{t\geq 0}$ is analytic in the underlying space $\mathcal{H}_{p}$ . Moreover, a solution $(u, \theta)$ satisfies the estimates:
¶
$\|\nabla^{j}(\nabla^{2} u(\cdot, t), u_{t}(\cdot, t), \theta(\cdot,t))\|_{L_{q}(\mbi{R}_{+}^{n})}$
¶
$\leq C_{p,q}t^{-\frac{j}{2}-\frac{n}{2}\big(\frac{1}{p} - \frac{1}{q}\big)} \|(\nabla^{2} u_{0}, v_{0}, \theta_{0})\|_{L_{p}(\mbi{R}_{+}^{n})} \quad (t > 0)$
¶
$(t > 0)$
¶
for $j = 0, 1,2$ provided that $1 < p \leq q \leq \infty$ when $j = 0$ , 1 and that $1 < p \leq q < \infty$ when $j = 2$ , where $\nabla^{j}$ stands for space gradient of order $j$ .