On the $L_{p}$ analytic semigroup associated with the linear thermoelastic plate equations in the half-space
NAITO, Yuka ; SHIBATA, Yoshihiro
J. Math. Soc. Japan, Tome 61 (2009) no. 3, p. 971-1011 / Harvested from Project Euclid
The paper is concerned with linear thermoelastic plate equations in the half-space $\mbi{R}^{n}_{+} = \{x = (x_{1}, \ldots, x_{n}) \mid x_{n} > 0\}$ : ¶ $u_{tt} + \Delta^{2}u + \Delta\theta = 0$ and ¶ $\theta_{t} - \Delta \theta - \Delta u_{t} = 0$ $\mbi{R}_{+}^{n}\times(0, \infty),$ ¶ subject to the boundary condition: $u|_{x_{n}=0} = D_{n}u|_{x_{n}=0} = \theta|_{x_{n}=0} = 0$ and initial condition: $(u, D_{t}u, \theta)|_{t=0} = (u_{0}, v_{0}, \theta_{0}) \in \mathcal{H}_{p} = W^{2}_{p, D}\times L_{p}\times L_{p}$ , where $W^{2}_{p, D} = \{u \in W^{2}_{p} \mid u|_{x_{n}=0} = D_{n}u|_{x_{n}=0} = 0\}$ . We show that for any $p \in (1, \infty)$ , the associated semigroup $\{T(t)\}_{t\geq 0}$ is analytic in the underlying space $\mathcal{H}_{p}$ . Moreover, a solution $(u, \theta)$ satisfies the estimates: ¶ $\|\nabla^{j}(\nabla^{2} u(\cdot, t), u_{t}(\cdot, t), \theta(\cdot,t))\|_{L_{q}(\mbi{R}_{+}^{n})}$ ¶ $\leq C_{p,q}t^{-\frac{j}{2}-\frac{n}{2}\big(\frac{1}{p} - \frac{1}{q}\big)} \|(\nabla^{2} u_{0}, v_{0}, \theta_{0})\|_{L_{p}(\mbi{R}_{+}^{n})} \quad (t > 0)$ ¶ $(t > 0)$ ¶ for $j = 0, 1,2$ provided that $1 < p \leq q \leq \infty$ when $j = 0$ , 1 and that $1 < p \leq q < \infty$ when $j = 2$ , where $\nabla^{j}$ stands for space gradient of order $j$ .
Publié le : 2009-10-15
Classification:  thermoelastic plate equations,  whole space,  half space,  resolvent estimate,  $L_{p}$ analytic semigroup,  $L_{p}$-$L_{q}$ decay estimate,  35K50,  74F05
@article{1257520498,
     author = {NAITO, Yuka and SHIBATA, Yoshihiro},
     title = {On the $L\_{p}$ analytic semigroup associated with the linear thermoelastic plate equations in the half-space},
     journal = {J. Math. Soc. Japan},
     volume = {61},
     number = {3},
     year = {2009},
     pages = { 971-1011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257520498}
}
NAITO, Yuka; SHIBATA, Yoshihiro. On the $L_{p}$ analytic semigroup associated with the linear thermoelastic plate equations in the half-space. J. Math. Soc. Japan, Tome 61 (2009) no. 3, pp.  971-1011. http://gdmltest.u-ga.fr/item/1257520498/