Haar multipliers meet Bellman functions
Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, p. 799-840 / Harvested from Project Euclid
Using Bellman function techniques, we obtain the optimal dependence of the operator norms in $L^2(\mathbb{R})$ of the Haar multipliers $T_w^t$ on the corresponding $RH^d_2$ or $A^d_2$ characteristic of the weight $w$, for $t=1,\pm 1/2$. These results can be viewed as particular cases of estimates on homogeneous spaces $L^2(vd\sigma)$, for $\sigma$ a doubling positive measure and $v\in A^d_2(d\sigma)$, of the weighted dyadic square function $S_{\sigma}^d$. We show that the operator norms of such square functions in $L^2(v d\sigma)$ are bounded by a linear function of the $A^d_2(d\sigma )$ characteristic of the weight $v$, where the constant depends only on the doubling constant of the measure $\sigma$. We also show an inverse estimate for $S_{\sigma}^d$. Both results are known when $d\sigma=dx$. We deduce both estimates from an estimate for the Haar multiplier $(T_v^{\sigma})^{1/2}$ on $L^2(d\sigma)$ when $v\in A_2^d(d\sigma)$, which mirrors the estimate for $T_w^{1/2}$ in $L^2(\mathbb{R})$ when $w\in A^d_2$. The estimate for the Haar multiplier adapted to the $\sigma$ measure, $(T_v^{\sigma})^{1/2}$, is proved using Bellman functions. These estimates are sharp in the sense that the rates cannot be improved and be expected to hold for all $\sigma$, since the particular case $d\sigma=dx$, $v=w$, correspond to the estimates for the Haar multipliers $T^{1/2}_w$ proven to be sharp.
Publié le : 2009-06-15
Classification:  Haar multipliers,  Bellman functions,  sharp weighted inequalities,  dyadic square function,  $A_p$ weights,  reverse Holder $p$ weights,  homogenous spaces,  42A45,  42C99,  47A63,  47B37
@article{1257258096,
     author = {Pereyra
, 
Mar\'\i a Cristina},
     title = {Haar multipliers meet Bellman functions},
     journal = {Rev. Mat. Iberoamericana},
     volume = {25},
     number = {1},
     year = {2009},
     pages = { 799-840},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257258096}
}
Pereyra
, 
María Cristina. Haar multipliers meet Bellman functions. Rev. Mat. Iberoamericana, Tome 25 (2009) no. 1, pp.  799-840. http://gdmltest.u-ga.fr/item/1257258096/