A Constant Rank Theorem for Hermitian $k$-Convex Solutions of Complex Laplace Equations
Han, Fei ; Ma, Xi-Nan ; Wu , Damin
Methods Appl. Anal., Tome 16 (2009) no. 1, p. 263-290 / Harvested from Project Euclid
Using the strong maximum principle, we obtain a constant rank theorem for the Hermitian $k$–convex solutions of complex Laplace equation.
Publié le : 2009-06-15
Classification:  Hermitian $k$–convex,  constant rank,  complex Laplace equation,  maximum principle,  35J60,  58G11,  32Q15
@article{1257170937,
     author = {Han, Fei and Ma, Xi-Nan and Wu , Damin},
     title = {A Constant Rank Theorem for Hermitian $k$-Convex Solutions of Complex Laplace
				Equations},
     journal = {Methods Appl. Anal.},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 263-290},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257170937}
}
Han, Fei; Ma, Xi-Nan; Wu , Damin. A Constant Rank Theorem for Hermitian $k$-Convex Solutions of Complex Laplace
				Equations. Methods Appl. Anal., Tome 16 (2009) no. 1, pp.  263-290. http://gdmltest.u-ga.fr/item/1257170937/