Higher Order Derivative Estimates for Finite-difference Schemes for Linear Elliptic and Parabolic Equations
Gyöngy, István ; Krylov, Nicolai
Methods Appl. Anal., Tome 16 (2009) no. 1, p. 187-216 / Harvested from Project Euclid
We give sufficient conditions under which solutions of finite-difference schemes in the space variable for second order possibly degenerate linear parabolic and elliptic equations admit estimates of spatial derivatives up to any given order independent of the mesh size.
Publié le : 2009-06-15
Classification:  Finite-difference approximations,  linear elliptic,  parabolic equations,  65M15,  35J70,  35K65
@article{1257170935,
     author = {Gy\"ongy, Istv\'an and Krylov, Nicolai},
     title = {Higher Order Derivative Estimates for Finite-difference Schemes for Linear
				Elliptic and Parabolic Equations},
     journal = {Methods Appl. Anal.},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 187-216},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1257170935}
}
Gyöngy, István; Krylov, Nicolai. Higher Order Derivative Estimates for Finite-difference Schemes for Linear
				Elliptic and Parabolic Equations. Methods Appl. Anal., Tome 16 (2009) no. 1, pp.  187-216. http://gdmltest.u-ga.fr/item/1257170935/