Infinite divisibility of random measures associated to some random Schrödinger operators
Nakano, Fumihiko
Osaka J. Math., Tome 46 (2009) no. 1, p. 845-862 / Harvested from Project Euclid
We study a random measure which describes distribution of eigenvalues and corresponding eigenfunctions of random Schrödinger operators on $L^{2}(\mathbf{R}^{d})$. We show that in the natural scaling every limiting point is infinitely divisible.
Publié le : 2009-09-15
Classification:  82B44,  81Q10
@article{1256564209,
     author = {Nakano, Fumihiko},
     title = {Infinite divisibility of random measures associated to some random Schr\"odinger operators},
     journal = {Osaka J. Math.},
     volume = {46},
     number = {1},
     year = {2009},
     pages = { 845-862},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256564209}
}
Nakano, Fumihiko. Infinite divisibility of random measures associated to some random Schrödinger operators. Osaka J. Math., Tome 46 (2009) no. 1, pp.  845-862. http://gdmltest.u-ga.fr/item/1256564209/