Surfaces with $K^{2}=8$, $p_{g}=4$ and canonical involution
Bauer, Ingrid C. ; Pignatelli, Roberto
Osaka J. Math., Tome 46 (2009) no. 1, p. 799-820 / Harvested from Project Euclid
In this paper we classify completely all regular minimal surfaces with $K^{2}=8$, $p_{g}=4$ whose canonical map is composed with an involution. We obtain six unirational families. The last two are irreducible components of the moduli space of minimal surfaces of general type with $K^{2}=8$, $p_{g}=4$. These families hit three different topological types.
Publié le : 2009-09-15
Classification:  14J29,  14J10,  14J50
@article{1256564207,
     author = {Bauer, Ingrid C. and Pignatelli, Roberto},
     title = {Surfaces with $K^{2}=8$, $p\_{g}=4$ and canonical involution},
     journal = {Osaka J. Math.},
     volume = {46},
     number = {1},
     year = {2009},
     pages = { 799-820},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1256564207}
}
Bauer, Ingrid C.; Pignatelli, Roberto. Surfaces with $K^{2}=8$, $p_{g}=4$ and canonical involution. Osaka J. Math., Tome 46 (2009) no. 1, pp.  799-820. http://gdmltest.u-ga.fr/item/1256564207/